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Introduction

- Tropical rainfall in the global climate

- The global energy/water cycle and the maritime continent
- JEPP-HARIMAU and SATREPS-MCCOE projects
Review

Diurnal cycle observed around the IMC coastlines
Local rainfall as a function of coastal distance
Regional rainfall as a function of “coastline density”
Consistency with the global water budget

Control of the global climate

Conclusions
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ISQUAR Lecture 4
Climate-biogeosphere-humanosphere interaction
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The equatorial coastal rainfall is dependent directly on sea-land heat contrast. The sea surface temperature
varies through atmosphere-ocean interactions such as El Nifio-southern oscillation (ENSO) over the Pacific
and Indian-Ocean dipole mode (IOD) occurring respectively after and before late 2018. The land surface
heating by sunshine before the noon makes the rainy season in each hemispheric summer (twice near the
equator), and this (as well as nighttime cooling) is dependent on the land surface properties. The resultant
rainfall sustains the biosphere, which is partly used as the humanosphere. The human activities affect the land
surface as well as the greenhouse and parasol effects. An important 1ssue 1s the sustainable development of the
Indonesian peatland accumulating massive carbon and causing serious forest fire under less rainfall with a
strong El Nifio event.

1. Introduction: Earth as a land-sea coexisting planet

2. Ocean-atmosphere interactions

3. Continent-ocean “collaboration” enhancing climatic cycles and water maintenance
4. Biosphere and humanosphere (anthroposphere)



1. Introduction: Earth’s tropical atmosphere and ocean

® Recognition of the nature including our planet Earth was started at first as description of
locality of ground and sky by geography and astronomy (geodesy), and then understood
theoretically using generalized laws of physics.

® Greek and Roman scientists pioneered the first category, and among them Eratosthenes
(c. 275 —c.194 BC), Hipparchus (¢.190 — ¢.120 BC) and Ptolemacus (c. AD 83 —c. 168)
recognized surely the Tropic of Cancer and the Tropic of Capricorn as the northern and
southern latitudinal limits over Earth where Sun can arrive in the zenith on each solstice,
or those of Sun over the celestial sphere (cf. Chapter 4, Section 6.1).

® The low-latitude region around the equator between the both Tropics became called
“tropics” geographically until the great voyage ages.
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Many textbooks of theoretical, physical or dynamical meteorology described almost only on
the mid-latitudes; such as geostrophic winds, extratropical cyclones, fronts and their practical
application tools called weather maps, but these concepts are almost useless in the tropics.

Chapters of tropical meteorology are used mainly for tropical cyclones, although they appear
actually in subtropics and very rarely in the central tropics near the equator (cf. Section 6.3).

In the equatorial region or low latitudes with solar-energy input (excess) and almost horizontal
Earth’s rotation, forced convective motions in vertical planes are more essential rather than
unstable horizontally vortical motions dominant in the middle/latitudes (Chapter 4).

On one hand, because of delayed/limited establishment of observation network over
developing countries and broader oceans, improvement of the geographical description aspect
is still necessary.

On the other hand, as well as the above-mentioned dynamical features, interannual/
intraseasonal interactions with open oceans and water cycles with rainforest lands have been
requesting establishment of the physical aspect of tropical meteorology as a rather new
paradigm. This is the author’s major motivation to prepare this lecture.

Borderless combination of the two aspects is also required by recent computer-network
innovations, sustainability crisis (environmental damages with continuous development) and
extraterrestrial/extrasolar knowledge expansions.

Now geographical observers study numerical physical model output, and atmospheric
physicists study advanced geographical observations and geography of other planets.



Two major forcings of star on planet

Both o< (distance) ™2, but planetary response is different

® Gravitation Balanced with

revolutional centrifugal force
Revolutional orbit (Kepler’s laws)
— Stellar distance
= Stellar radiation,
annual length
Oceanic tides, planetary tides

d

( star‘)

® Radiation

d
|

(star)

Balanced with planetary IR cooling
- Time scale > rotation
— Meridional differential heating
*Time scale ~ rotation
—Zonal diffrential heating
Atmospheric tides




Sir Isaac Newton
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Max Planck (1858-1947)

http://www.gahetna.nl/collectie/afbeeldingen/fotocollectie/zoeken/weergave/detail/start/2/tstart/0/q/zoekterm/Planck

Black Body Radiation Law (1900)

T *AB,

“Energy(-density) flux” (energy per unit
time and unit area) for electromagnetic waves
radiated (with unit solid angle and unit wavelength

interval) from a “black body” with temperature 7'
2hc?
A>{explhc/(AkT)] — 1}

(A: wavelength, c: light speed, k: Boltzmann
constant, h: Planck constant).

B,(T) =

100

/ um
(Andrews, 2000, Chapter 3

(Integration (area) — Energy flux intensity) (Differentiation (peak) — Maximum mode wavelength)

Stefan-Boltzmann’s law Wien’s law

2897

B(T) = Ln jOOOBA(T)d/l

nnward
p

= - - -2 —4
(0-—567X10 8 Js 1m K ) (_) Exercise 1_2)
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Climate = heating/cooling balance

* Solar radiation (with visible light):
energy input (heating) to Earth

» Earth’s radiation (with infrared wave):

energy output (cooling) of Earth



“0-dimensional” radiative “equilibria” for Solar-system planets
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Global Energy Flows W m 2 (Trenberth et al., 2009) ()
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Tropical climate in global geography
® Koppen’s (1918) climate classification

- temperature: sensible (radiative) heating
- rainfall: latent heating .

® Rainfall: a flux quantity (per area per time)
- Horizontal scale: rain gage, radar, ...
- Temporal: hourly, daily, monthly, annual
- Individually short-lived small clouds
- Organized into multiple scale structures

Wladzl;gZ6Petf;4I(<);ippen ® Tropical climate (4): rainforest (4f), savanna (Aw)
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i " -A
(Kbppen, 1918)
Koppen’s Af : min. monthly rain > 60 mm (annual >> 720 mm/year)
low-lat. S.America, Africa, “East Indies”

excluded inland of Sumatera, Kalimantan and Papua
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SUMATRA

ITS HlSTORY AND PEOPLE x EDWIN M. LOEB

 (Loeb, 1935; reprinted 1972, 1989)

http://aoe.scitec.kobe-u.ac.jp/~mdy/library/books/Loeb-Sumatra

victims.

History. — The pre-European history of Sumatra is of great
importance for the understanding of the complex native cultures of
European contact. Unfortunately no uniformity exists in the inter-
pretation of original sources, even among such competent scholars as
Krom and Ferrand. Ferrand was one of the first historians to show
that it was Sumatra and not Java which gave an early impetus to the
expansion of Hindu civilization in Insulinde.

$rivijaya in the Palembang River valley in Sumatra was colonized
by Hindus at an early date; perhaps between the first and second
century A. D. At any rate like Cambodia and Champa, this empire
was in full cultural development in the seventh century.

Actually the first Hindu kingdom mentioned in Sumatra was that
of Malayu (Malay-Land) in Djambi in 644 A. D. A short time after-
wards, however, the kingdom of Srivijaya was powerful enough to
conquer Malayu and Banka, gain a foothold on the Malay Peninsula
and come into close contact with Java. The Chinese royal edict of 695
mentions ambassadors of Srivijaya. This kingdom was already the
chief one of Sumatra, and held Malayu as a subject state.

The first use of the name Sumatra occurred in 1017. The man
who at that time was king of Sumatra (Srivijaya) sent ambassadors,
a letter, and slaves to China. The treasures consisted of clothing,
ivory, and Sanskrit books. The Chinese called this king “haji Sumatra

8

bhiimi”, the king of the land of Sumatra. Krom does not accept any
of the explanations as yet given for this name. Most writers believe
that the word “Sumatra” is derived from the word “Samudra”, which
is the Sanskrit name Tor the sea, and also for a later kingdem in At] eh.
In this case Sumatra is “Sea- land” But Krom claims that it is pecul-
iar to call an island Seasland;” and besides, that this name is of later
use than the name Sumatra.

The initial cause of the fall of Srivijaya is said by Krom to have
been two expeditions of conquest sent by Candrabhana, then king of
Srivijaya. Candrabhana landed in Ceylon in the year 1251. He pleaded
friendship, stating “We are all Buddhists”. Then, treacherously, he
reduced the native cities to ruins. Some years 1ater the conqueror, re-
turned again to the island, but this time he was forced to flee, leaving
his harem behind. Among the treasures which the vanqmshed were
forced to leave in Ceylon were mentioned: royal insignia, shell
trumpets, parasols, and kettle drums.

Due to this weakening of the power of Srivijaya, Krtanagara,
kmg of Smgasan m Java thought that the auspicious moment had



June 1968

C. S. Ramage
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ROLE OF A TROPICAL “MARITIME CONTINENT" IN THE ATMOSPHERIC CIRCULATION !

C. S. RAMAGE

Deparment of Geosciences, Univers
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Thunderstorm frequency and amount of moisture abt
South America and Africa and the ‘“‘maritime continent’
amount of heat for export than do equatorial oceanic regio

Over the maritime continent in Januarv 1963, heat g¢
northward and through conversion of potential to kinetic
jet stream. In January 1964 drought over the maritime c
heat in the upper troposphere, associated with inefficient p
winters over the western Pacific and southeast Asia fluctuat
1964.

Sinee the troposphere over the maritime continent in v
the extratropical eirculation, the proposed Marshall Island
be rescheduled to include winter.
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In Solation Variability A. Pracession of the equinoxes (pariod = 23,000 years) (b)
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Ocean/Continent ~ 7:3 has been conserved for recent 400 Myears

K/T Boundary 66 Ma
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Climate change for recent 1 Myears (NASA, 1992)
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Alfred Lothar Wegener (1880 —1930)
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1905: Doctorate in astronomy. Work for aecronomy. K
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1910: Conceiving of an idea of “continent drift” e

1915: Publication of a book on the idea. Marriage.
1919-23: Paleoclimatology with father-in-law Koppen
1924: Professor at University of Glaz

1930 (aged 50): Died during Greenland expedition.

(Wegener, 1911: Thermodynamik der Atmosphdre;
W, 1982&YHE5IE)



Wallace Smith Broecker
(1931 — Feb 19, 2019)

“Grandfather of climate science”
Popularized “Global warming” (1975)
Concept of “Ocean conveyor” (1982)
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Volcano ashes transported by stratospheric zonal flow
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